Site Loader

Another chapter in my Industry Analysis series

It has dawned on me recently that an entirely new Mega Multidimensional War of Titans is developing, entirely separate and distinct from the mobile smartphone Multidimensional Mega War of Titans.   In many ways this new industry war may be more strategic, larger and more valuable than the smart phone war.  The emerging new battleground is the Mega Global War of the Internet of Everything. The global players in this newly developing war are well known names in high technology: ARM, Broadcom, Cisco Systems, Intel, and Qualcomm, not to mention a new class of players like The Zigbee Alliance, Honeywell and a host of others.  A number of small Canadian companies are also in the thick of this.

Some history

The Internet of Everything has been around for over 20 years and gone absolutely nowhere for lack of “technology convergence” and effective industry “co-opetition.”  Definitional confusion has abounded, with terms like “home automation” and “machine to machine” (M2M) communication. The technology convergence issue is now resolved but not the need for “co-opetition.”    Despite this, it is estimated that there are already as many as two Billion  “Internet of Things” (IoT) devices already out there, though many of them do not yet work. Think of these as “sensors,” each with a microchip of some description, and some form of data communication, not all Internet compatible. The problem with what is out there is what I call “the Tower of Babbling Things.” There is no global industry consensus on how these sensors should communicate, so each competitor has gone forward to establish their own vertical proprietary markets.  Layer on  top of that multiple data communication protocols that do not talk to each other. The international standard bodies like IEEE and ISO have bravely declared their intent to establish coherence from chaos, but without the major players, their efforts are doomed. The result is a massive market hairball.  But the market value projections are so massive (see the Business Intelligence Infographic below) that the biggest global players appear finally to be moving.

The Mega Battlefield Begins to Take Shape.

While some major players have been engaged in the Internet of Everything space for some time, others are only beginning to mobilize their forces..  Intel has this week announced the formation of new Internet of Things division, following Intel’s recent announcement of of new family of “Quark”  Internet of Things microprocessors.
This is clearly a very important new technology development for all us, and is very much worth following. It will have an impact and major implications for all consumers and businesses.

Read more: The Internet of Things: the promise and the hairball

Read more: Zigbee wants to be the Bluetooth of the Internet of Things

Read more: Will the Internet of Things turn into a Tower of Babbling Things?

The Internet of Everything Outstrips the Smartphone Revolution

The Internet of Everything

Reblogged from SemiWiki.com

Can Intel Compete in the Internet of Things?

Published on 11-05-2013 03:00 PM
Kevin Ashton, a British technology pioneer, is credited for the term “The Internet of Things” to describe an ecosystem where the Internet is connected to the physical world via ubiquitous sensors. Simply stated: rather than humans creating content for the internet IoT devices create the content. To be clear, this does not include PCs, Smartphones, SmartTVs, or wearable electronics. Think everyday things like thermostats, appliances, parking meters, and medical devices enabling physical-to-digital communication via the internet.
Today there are an estimated 2B IoT devices in play and that number is expected to grow exponentially in the coming years, so yes, this is a big deal.The question I have is this: Does Intel have a chance here or will ARM and the fabless semiconductor ecosystem continue to dominate the IoT market?The annual ARM user gathering was last month and IoT was a major focus. You can read about the ARM and the Internet of Things keynote and visit the ARM TechCon website for more information. My agenda at the conference was gathering 14nm silicon data but I attended the IoT presentations as well and that lead me to where I am today, at the IEEE IoT workshop.“The great promise of the Internet of Things is about the transformation of the world based on the convergence of numerous disjointed systems into a fully connected environment where complex tasks are synchronized and performed by a unified platform,” said Oleg Logvinov, member of the IEEE-SA Standards Board, member of the IEEE-SA Corporate Advisory Group, and director of market development, Industrial and Power Conversion Division withSTMicroelectronics. “During the workshop in Silicon Valley, we will explore how various technologies can be applied across multiple verticals and how convergence is fueling IoT’s endless potential and opportunities.” I also attended the IDF 2013 Forum last September where Intel announced their IoT contender, Quark. For you Star Trek fans Quark was the beloved con man pictured above. For Intel, Quark is a synthesizable core based on the 486 instruction set to which they claim uses 1/10th the power of Atom and is 1/5 the size. This was just slides with little technical data but details are now starting to emerge. The first Quark will be manufactured on a 32nm SoC process. The main problem I see here is that Intel’s 32nm is HKMG which is not cost nor power optimized and will unfavorably compete with TSMC 28nm poly/SION but I digress…. Lets get back to business.
internetofthings2

The IoT value proposition is similar to mobile with low power and cost being the primary drivers. Business models and ecosystem are also going to be determining factors. Do you even know what silicon is inside your mobile devices? I do, but most people don’t. Do you even care? I do, but again, you don’t. Is IoT going to be any different? Absolutely not so say good bye to the old school benchmarks and transistor one-upmanship.
Also read: Intel Quark: Synthesizable Core but you can’t have it
The first questions during the IDF Q&A were about Quark and the Intel business model. By definition a synthesizable core can be licensed and customized by the customer. ARM takes this to a deeper level by licensing the architecture and instruction set so customers have complete control over implementation. So the first question to Intel CEO Brian K. was: Will Intel license the Quark cores? The answer was, “No”. Can Quark be manufactured outside of Intel? No. Can customers synthesize Quark? No. Can Intel be successful in the IoT market with their current Quark business model? No (my incredibly biased opinion). Fortunately business models can change faster than technology so Intel still has a chance with IoT and Quark but they had better hurry.

Post Author: David Mayes

Founder, Mayo615 Technology Partners Ltd., UBC adjunct faculty, Intel alumnus, technology assessment, international business, cleantech, fly fisherman, native Californian and citizen of France, who has been very fortunate to have traveled, lived and worked all over the globe. My wonderful wife, Isabelle has reintroduced me to my French Provençal heritage.

3 Replies to “New Global Mega Industry Battle Developing in the Internet of Everything”

  1. Thanks David for sharing a unique business scenario, as usual, your speciality. Your closing lines are a good and timely piece of precious advice for Intel. I hope that Intel management will be wise enough to pay you for that appropriately.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Discover more from Mayo615 Technology Partners Ltd

Subscribe now to keep reading and get access to the full archive.

Continue reading